对物理公式教学有效性的探讨

文/梅州市梅县南口中学 黄友能

公式是物理学科的重要内容, 公式多,是初中物理教材的一个特 点。容易混淆,是中学生觉得学习 物理难的一个普遍现象。有些人认 为,公式在计算题中才有用,只要 背熟公式就可以了,这是一个错误 的看法。物理公式是对各种物理现 象、规律的高度概括,是科学家在 广泛研究物理现象,通过分析、归 纳、推理所得出来的, 再经过实践 检验, 用来反映物理现象及规律的 表达式子, 也是学生解答物理问题 最根本、最直接、最有效的方法。 因此, 教会学生运用公式来解决问 题是实现教学目标的最有效途径, 也是教学的重点。

一、引导学生加深对公式推导 过程的认识

每一个公式都是在一定的知识 基础上,通过分析、推理而归纳出 来的。让学生了解公式的推导过 程,有助于学生对公式的理解,避 免死记硬背, 也可以加深理解知识 之间的联系。例如学习液体内部压 强公式 p=pgh 时, 学生会产生这样 的疑问: "物体压强 p=F/S, 压强 大小与压力和受力面积的大小有 关, 为什么又与深度 h 有关?"因 此, 在授新课时, 从公式 p=F/S 出 发, 让学生先求小水柱对底部产生 的压强,再将计算过程整理推导: $p = F/S = G/S = mg/S = \rho vg/S = \rho Shg/S =$ ρhg=ρgh。这样, 学生就明白液体 压强与深度 h 的关系, 再进一步分 析 h 的改变与 p 的大小变化,就可 以得出液体内部压强的特点。又 如, 电功率 P=W/t=UIt=UI, 通过 推导将电功率P与电压U、电流I 联系起来。这样展示公式的推导过 程, 既加深了学生对公式的认识,

又理清了新旧知识间的内在联系。

二、引导学生正确理解和应用 公式

明确公式中每个字母代表的物 理量及其适用单位,是物理教学中 的一个重要方面, 也是教会学生理 解和正确运用公式的前提。例如: $F = \rho g V$ 中的 ρ, 是产生浮力的液体 密度,而学生经常会看作物体的密 度。公式使用时明确各物理量适用 单位也非常重要。如: Q=cm (t-t_o) 中, 如果 m 取单位 "g", 结果 "O" 是不能得到单位"J", 因为比热 C 的单位为 "J/(Kg·℃)"。电能 W=Pt 与灯泡上标有"220V 40W"中都 有"W", 前者是指电流所消耗的 电能,单位"J",而后者却代表灯 泡的额定功率,单位"瓦特"。因 此, 让学生明确公式中的物理量及 其单位是物理教学中要特别注意的 问题。

让学生明确公式应用的条件及 适用范围。公式是反映物理现象的 规律,每一个公式反映一定的物理 性质, 具有一定的条件, 适用于一 定的范围,否则会造成滥用。例 如:由公式 Q=U²/R 可知,额定电 压相同的灯泡,额定功率越大,电 阻越小,单位时间内产生的热量越 多。而根据焦耳定律 O=I2Rt, 又可 理解为电流不变时, 电阻越大, 单 位时间内产生的热量越多,两者好 似有矛盾, 但认真分析前提条件就 能明白其中的道理。可见, 不弄清 前提条件,容易造成理解上的错 误。公式使用有一定的范围。如: p=F/S、p=W/t 是普遍适用于压强、 功率的计算,而p=pgh、P=UI只 限于液体压强、电功率的计算。所 以,使用公式前必须明确其使用的 条件及范围。

三、指导学生灵活运用公式, 提高应变能力

学会利用公式去理解、掌握物理概念。很多公式是物理概念的反映。善于利用公式,有助于对物理概念的理解和记忆。例如: $c=Q/m(t-t_o)$,从运算结果来看,m最后得到 1Kg, $t \ge 1^{\circ}C$,根据结果可以推出比热的概念:1 千克的某种物质温度升高 $1^{\circ}C$ 时,吸收的热量。利用公式记住概念,是学习物理中较好的方法,既可以加深学生对物理概念的理解,又能提高学生理解记忆的能力。

以公式为依据,理清实验步骤。在物理实验中公式仍然是学生进行实验的依据,教会学生依据公式进行实验,用公式去拓展思路,确定实验方法尤为重要。例如:"给你一把弹簧测力计,一个装满水的烧杯,一根细线,怎样测出石块的密度?"这一道实验题与学生在实验做测量密度的实验差别很大,没有天平和量筒,不能直接测得石块的质量和体积,那么怎样用弹簧测力计和水去测相关的物思量?这就要求学生有一个明确的思路,而密度公式ρ=m/v 就是实验的依据,可以根据扩展思路:

$$\rho{=}m/v{{m=}G/g\atop V_{\#}{=}F_{\not\!\!\!/}/\rho_{\#}g}$$

G--弹簧测力计测出

F₁₄=G₄₄-F₁₆ (在水中弹簧测力计示数)

这样以公式为线索,寻找已知、未知量与所给实验工具的关系,实验步骤和所需测的物理量就一目了然。

责任编辑 罗 峰